ADN antiguo

El ADN antiguo (ADNa) es aquel ADN aislado de especímenes antiguos.[1]​ También puede ser descrito como cualquier ADN recuperado de muestras biológicas que no han sido preservadas específicamente para análisis de ADN futuros. Algunos ejemplos incluyen el análisis de ADN recuperado de material arqueológico e histórico de esqueletos o tejidos momificados, colecciones o archivos de muestras médicas, especímenes de museos o herbarios históricos, restos paleontológicos de animales o plantas del Holoceno, sedimentos marinos y lacustres, entre otros.

A diferencia de los análisis genéticos modernos, los estudios de ADN antiguo están caracterizados por la baja calidad del ADN, esto limita los alcances de los análisis. Además, debido a la degradación de las moléculas de ADN, un proceso correlacionado con factores tales como el tiempo, la temperatura, y la presencia de agua libre, supera los límites más allá dentro de los cuales el ADN tiene probabilidades de sobrevivir.

Allentoft et al. (2012) intentaron calcular este límite por medio del estudio de la descomposición del ADN mitocondrial y nuclear en los huesos de Moa. El ADN se degrada de manera exponencial. De acuerdo a su modelo, el ADN mitocondrial (ADNmt) se degrada en promedio un par de bases cada 6 830 000 años a -5 °C.[2]​ La cinética de descomposición ha sido medida por medio de experimentos de envejecimiento acelerado donde se presentan aún más la fuerte influencia de la temperatura y humedad de almacenamiento en la descomposición del ADN.[3]

El ADN nuclear se degrada dos veces más rápido que el ADNmt. Como tales, los primeros estudios que informaron sobre la recuperación de ADN mucho más antiguo, por ejemplo a partir de restos de dinosaurios del Cretácico, puede tener su origen en la contaminación de la muestra. Como tal, los primeros estudios que informaron acerca de la recuperación de ADN más antiguo, por ejemplo, a partir de restos de dinosaurios del Cretácico, pudieron tener su origen de una muestra contaminada.

ADN reticulado, de 4000 años de antigüedad, extraído del hígado del sacerdote del Antiguo Egipto Ankh-Nekht.
  1. Bioinformatics and Functional Genomics By Jonathan Pevsner ISBN 978-0-470-08585-1, ISBN 0-470-08585-1
  2. Allentoft ME; Collins M; Harker D; Haile J; Oskam CL; Hale ML; Campos PF; Samaniego JA; Gilbert MTP; Willerslev E; Zhang G; Scofield RP; Holdaway RN; Bunce M (2012). «The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils». Proceedings of the Royal Society B 279 (1748): 4724 - 33. doi:10.1098/rspb.2012.1745. 
  3. Grass, R. N.; Heckel, R.; Puddu, M.; Paunescu, D.; Stark, W. J. (2015). «Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes». Angewandte Chemie International Edition 54 (8): 2552 - 2555. doi:10.1002/anie.201411378. 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search